机器学习一般常用的算法有哪些?

2024-05-19 00:24

1. 机器学习一般常用的算法有哪些?

机器学习是人工智能的核心技术,是学习人工智能必不可少的环节。机器学习中有很多算法,能够解决很多以前难以企的问题,机器学习中涉及到的算法有不少,下面小编就给大家普及一下这些算法。
一、线性回归
一般来说,线性回归是统计学和机器学习中最知名和最易理解的算法之一。这一算法中我们可以用来预测建模,而预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。当然我们可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。就目前而言,线性回归已经存在了200多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术。
二、Logistic 回归
它是解决二分类问题的首选方法。Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。logistic 函数看起来像一个大的S,并且可以将任何值转换到0到1的区间内。这非常实用,因为我们可以规定logistic函数的输出值是0和1并预测类别值。像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。
三、线性判别分析(LDA)
在前面我们介绍的Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。而LDA的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA包括两个,第一就是每个类别的平均值,第二就是所有类别的方差。而在线性判别分析,进行预测的方法是计算每个类别的判别值并对具备最大值的类别进行预测。该技术假设数据呈高斯分布,因此最好预先从数据中删除异常值。这是处理分类预测建模问题的一种简单而强大的方法。
四、决策树
决策树是预测建模机器学习的一种重要算法。决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量x和该变量上的一个分割点。而决策树的叶节点包含一个用于预测的输出变量y。通过遍历该树的分割点,直到到达一个叶节点并输出该节点的类别值就可以作出预测。当然决策树的有点就是决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。
五、朴素贝叶斯
其实朴素贝叶斯是一个简单但是很强大的预测建模算法。而这个模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来。第一种就是每个类别的概率,第二种就是给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当我们的数据是实值时,通常假设一个高斯分布,这样我们可以简单的估计这些概率。而朴素贝叶斯之所以是朴素的,是因为它假设每个输入变量是独立的。这是一个强大的假设,真实的数据并非如此,但是,该技术在大量复杂问题上非常有用。所以说,朴素贝叶斯是一个十分实用的功能。
六、K近邻算法
K近邻算法简称KNN算法,KNN 算法非常简单且有效。KNN的模型表示是整个训练数据集。KNN算法在整个训练集中搜索K个最相似实例(近邻)并汇总这K个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数类别值。而其中的诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同,那么最简单的技术是使用欧几里得距离,我们可以根据每个输入变量之间的差值直接计算出来其数值。当然,KNN需要大量内存或空间来存储所有数据,但是只有在需要预测时才执行计算。我们还可以随时更新和管理训练实例,以保持预测的准确性。
七、Boosting 和 AdaBoost
首先,Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。而AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显著的是随机梯度提升。当然,AdaBoost 与短决策树一起使用。在第一个决策树创建之后,利用每个训练实例上树的性能来衡量下一个决策树应该对每个训练实例付出多少注意力。难以预测的训练数据被分配更多权重,而容易预测的数据分配的权重较少。依次创建模型,每一个模型在训练实例上更新权重,影响序列中下一个决策树的学习。在所有决策树建立之后,对新数据进行预测,并且通过每个决策树在训练数据上的精确度评估其性能。所以说,由于在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据十分重要。
八、学习向量量化算法(简称 LVQ)
学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。而学习向量量化的表示是码本向量的集合。这些是在开始时随机选择的,并逐渐调整以在学习算法的多次迭代中最好地总结训练数据集。在学习之后,码本向量可用于预测。最相似的近邻通过计算每个码本向量和新数据实例之间的距离找到。然后返回最佳匹配单元的类别值或作为预测。如果大家重新调整数据,使其具有相同的范围,就可以获得最佳结果。当然,如果大家发现KNN在大家数据集上达到很好的结果,请尝试用LVQ减少存储整个训练数据集的内存要求

机器学习一般常用的算法有哪些?

2. 机器学习中需要掌握的算法有哪些?

在学习机器学习中,我们需要掌握很多算法,通过这些算法我们能够更快捷地利用机器学习解决更多的问题,让人工智能实现更多的功能,从而让人工智能变得更智能。因此,本文为大家介绍一下机器学习中需要掌握的算法,希望这篇文章能够帮助大家更深入地理解机器学习。
首先我们为大家介绍的是支持向量机学习算法。其实支持向量机算法简称SVM,一般来说,支持向量机算法是用于分类或回归问题的监督机器学习算法。SVM从数据集学习,这样SVM就可以对任何新数据进行分类。此外,它的工作原理是通过查找将数据分类到不同的类中。我们用它来将训练数据集分成几类。而且,有许多这样的线性超平面,SVM试图最大化各种类之间的距离,这被称为边际最大化。而支持向量机算法那分为两类,第一就是线性SVM。在线性SVM中,训练数据必须通过超平面分离分类器。第二就是非线性SVM,在非线性SVM中,不可能使用超平面分离训练数据。
然后我们给大家介绍一下Apriori机器学习算法,需要告诉大家的是,这是一种无监督的机器学习算法。我们用来从给定的数据集生成关联规则。关联规则意味着如果发生项目A,则项目B也以一定概率发生,生成的大多数关联规则都是IF_THEN格式。Apriori机器学习算法工作的基本原理就是如果项目集频繁出现,则项目集的所有子集也经常出现。
接着我们给大家介绍一下决策树机器学习算法。其实决策树是图形表示,它利用分支方法来举例说明决策的所有可能结果。在决策树中,内部节点表示对属性的测试。因为树的每个分支代表测试的结果,并且叶节点表示特定的类标签,即在计算所有属性后做出的决定。此外,我们必须通过从根节点到叶节点的路径来表示分类。
而随机森林机器学习算法也是一个重要的算法,它是首选的机器学习算法。我们使用套袋方法创建一堆具有随机数据子集的决策树。我们必须在数据集的随机样本上多次训练模型,因为我们需要从随机森林算法中获得良好的预测性能。此外,在这种集成学习方法中,我们必须组合所有决策树的输出,做出最后的预测。此外,我们通过轮询每个决策树的结果来推导出最终预测。
在这篇文章中我们给大家介绍了关于机器学习的算法,具体包括随机森林机器学习算法、决策树算法、apriori算法、支持向量机算法。相信大家看了这篇文章以后对机器学习有个更全面的认识,最后祝愿大家都学有所成、学成归来。

3. 常用机器学习方法有哪些?

机器学习中常用的方法有:
(1) 归纳学习
符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。
函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。
(2) 演绎学习
(3) 类比学习:典型的类比学习有案例(范例)学习。
(4) 分析学习:典型的分析学习有解释学习、宏操作学习。


扩展资料:
机器学习常见算法:
1、决策树算法
决策树及其变种是一类将输入空间分成不同的区域,每个区域有独立参数的算法。决策树算法充分利用了树形模型,根节点到一个叶子节点是一条分类的路径规则,每个叶子节点象征一个判断类别。先将样本分成不同的子集,再进行分割递推,直至每个子集得到同类型的样本,从根节点开始测试,到子树再到叶子节点,即可得出预测类别。此方法的特点是结构简单、处理数据效率较高。 
2、朴素贝叶斯算法
朴素贝叶斯算法是一种分类算法。它不是单一算法,而是一系列算法,它们都有一个共同的原则,即被分类的每个特征都与任何其他特征的值无关。朴素贝叶斯分类器认为这些“特征”中的每一个都独立地贡献概率,而不管特征之间的任何相关性。然而,特征并不总是独立的,这通常被视为朴素贝叶斯算法的缺点。简而言之,朴素贝叶斯算法允许我们使用概率给出一组特征来预测一个类。与其他常见的分类方法相比,朴素贝叶斯算法需要的训练很少。在进行预测之前必须完成的唯一工作是找到特征的个体概率分布的参数,这通常可以快速且确定地完成。这意味着即使对于高维数据点或大量数据点,朴素贝叶斯分类器也可以表现良好。 
3、支持向量机算法
基本思想可概括如下:首先,要利用一种变换将空间高维化,当然这种变换是非线性的,然后,在新的复杂空间取最优线性分类表面。由此种方式获得的分类函数在形式上类似于神经网络算法。支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。
参考资料:百度百科-机器学习(多领域交叉学科)

常用机器学习方法有哪些?

4. 机器学习十大算法 是哪些 知乎

决策树
随机森林算法
逻辑回归
SVM
朴素贝叶斯
K最近邻算法
K均值算法
Adaboost 算法
神经网络
马尔可夫

5. 想了解机器学习,需要知道哪些基础算法?

支持向量机(Support Vector Machine)
SVM是二元分类算法。给定一组2种类型的N维的地方点,SVM产生一个(N - 1)维超平面到这些点分成2组。假设你有2种类型的点,且它们是线性可分的。 SVM将找到一条直线将这些点分成2种类型,并且这条直线会尽可能地远离所有的点。
朴素贝叶斯分类(Naive Bayesian classification)
朴素贝叶斯分类是一种十分简单的分类算法,方程如下图所示——P(A|B)是后验概率,P(B|A)是可能性,P(A)是类先验概率,而P(B)是预测先验概率。朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。
决策树(Decision Trees)
决策树是一个决策支持工具,它使用树形图或决策模型以及序列可能性。包括各种偶然事件的后果、资源成本、功效。从商务决策的角度来看,大部分情况下,决策树是一个人为了评估做出正确决定的概率需要问的是/否问题的最小数值。它能让你以一个结构化和系统化的方式来处理这个问题,然后得出一个合乎逻辑的结论。
KNN算法
 KNN算法是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
聚类算法
聚类算法比较多,最有名的莫过于kmean算法了, K-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据他们的属性分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
BP神经网络算法
BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值
RBF神经网络算法
RBF网络是一个三层的网络,出了输入输出层之外仅有一个隐层。隐层中的转换函数是局部响应的高斯函数,而其他前向型网络,转换函数一般都是全局响应函数。由于这样的不同,要实现同样的功能,RBF需要更多的神经元,这就是rbf网络不能取代标准前向型网络的原因。但是RBF的训练时间更短。它对函数的逼近是最优的,可以以任意精度逼近任意连续函数。
想要入门的话建议看一下Peter Harrington写的《机器学习实战 [Machine learning in action]》按照书中的例子用python实现以下就清楚了


想了解机器学习,需要知道哪些基础算法?

6. 机器学习算法有哪些?最常用是哪些几种?有什么优点

楼主肯定对机器学习了解不多才会提这种问题。这问题专业程度看起来和“机器学习工程师”这词汇一样。
机器学习,基础的PCA模型理论,贝叶斯,boost,Adaboost,
模式识别中的各种特征,诸如Hog,Haar,SIFT等
深度学习里的DBN,CNN,BP,RBM等等。
非专业出身,只是略懂一点。

没有常用的,只是针对需求有具体的设计,或者需要自己全新设计一个合适的算法,现在最热门的算是CNN(convolutional neural networks)卷积神经网络了。
优点:不需要训练获取特征,在学习过程中自动提取图像中的特征,免去了常规方法中,大量训练样本的时间。在样本足够大的情况下,能够得到非常精确的识别结果。一般都能95%+的正确率。
缺点:硬件要求高,CUDA的并行框架算是用的很火的了。但是一般的台式机跑一个Demo花费的时间长资源占用高。不过这也是这块算法的通病。

7. 机器学习算法指的是什么?


机器学习算法指的是什么?

8. 目前最流行的机器学习算法是什么

毫无疑问,机器学习在过去几年越来越受欢迎。由于大数据是目前技术行业最热门的趋势,机器学习是非常强大的,可以根据大量数据进行预测或计算推理。
如果你想学习机器算法,要从何下手呢?
监督学习
1. 决策树:决策树是一种决策支持工具,使用的决策及其可能产生的后果,包括随机事件的结果,资源消耗和效用的树状图或模型。
从业务决策的角度来看,决策树是人们必须要选择是/否的问题,以评估大多数时候作出正确决策的概率。它允许您以结构化和系统的方式来解决问题,以得出逻辑结论。
2.朴素贝叶斯分类:朴素贝叶斯分类器是一种简单的概率分类器,基于贝叶斯定理,其特征之间具有强大(朴素)的独立性假设。
特征图像是方程 - P(A | B)是后验概率,P(B | A)是似然度,P(A)是类先验概率,P(B)是预测先验概率。
一些现实世界的例子是:
判断邮件是否为垃圾邮件
分类技术,将新闻文章氛围政治或体育类
检查一段表达积极情绪或消极情绪的文字
用于面部识别软件
3.普通最小二乘回归:如果你了解统计学,你可能已经听说过线性回归。最小二乘法是一种执行线性回归的方法。
您可以将线性回归视为拟合直线穿过点状分布的任务。有多种可能的策略可以做到这一点,“普通最小二乘法”策略就像这样 -你可以画一条线,然后把每个数据点,测量点和线之间的垂直距离,添加上去;拟合线将是距离总和的尽可能小的线。
线性是指您正在使用的模型来迎合数据,而最小二乘可以最小化线性模型误差。
4.逻辑回归: Logistic回归是一个强大的统计学方法,用一个或多个解释变量建模二项式结果。它通过使用逻辑函数估计概率,来衡量分类因变量与一个或多个独立变量之间的关系,后者是累积逻辑分布。
逻辑回归用于生活中:
信用评级
衡量营销活动的成功率
预测某一产品的收入
某一天会有地震吗
5.支持向量机: SVM是二元分类算法。给定N维空间中两种种类型的点,SVM生成(N-1)维的超平面将这些点分成2组。
假设你有一些可以线性分离的纸张中的两种类型的点。SVM将找到一条直线,将这些点分成两种类型,并尽可能远离所有这些点。
在规模上,使用SVM解决的一些特大的问题(包括适当修改的实现)是:广告、人类基因剪接位点识别、基于图像的性别检测,大规模图像分类...
6.集成方法:集成方法是构建一组分类器的学习算法,然后通过对其预测进行加权投票来对新的数据点进行分类。原始的集成方法是贝叶斯平均法,但更新的算法包括纠错输出编码、bagging和boosting。
那么集成方法如何工作,为什么它们优于单个模型?
均衡偏差:如果你均衡了大量的倾向民主党的投票和大量倾向共和党的投票,你总会得到一个不那么偏颇的结果。
降低方差:集合大量模型的参考结果,噪音会小于单个模型的单个结果。在金融领域,这被称为投资分散原则(diversification)——一个混搭很多种股票的投资组合,比单独的股票更少变故。
不太可能过度拟合:如果您有单个模型不完全拟合,您以简单的方式(平均,加权平均,逻辑回归)结合每个模型建模,那么一般不会发生过拟合。
无监督学习
7. 聚类算法:聚类是对一组对象进行分组的任务,使得同一组(集群)中的对象彼此之间比其他组中的对象更相似。
每个聚类算法是不同的,比如:
基于Centroid的算法
基于连接的算法
基于密度的算法
概率
降维
神经网络/深度学习
8. 主成分分析: PCA是使用正交变换将可能相关变量的观察值转换为主成分的线性不相关变量值的一组统计过程。
PCA的一些应用包括压缩、简化数据、便于学习、可视化。请注意,领域知识在选择是否继续使用PCA时非常重要。数据嘈杂的情况(PCA的所有组件都有很大差异)的情况不适用。
9.奇异值分解:在线性代数中,SVD是真正复杂矩阵的因式分解。对于给定的m * n矩阵M,存在分解,使得M =UΣV,其中U和V是酉矩阵,Σ是对角矩阵。
PCA实际上是SVD的简单应用。在计算机视觉技术中,第一个人脸识别算法使用PCA和SVD,以将面部表示为“特征脸”的线性组合,进行降维,然后通过简单的方法将面部匹配到身份;虽然这种方法更复杂,但仍然依赖于类似的技术。
10.独立成分分析: ICA是一种统计技术,用于揭示随机变量、测量或信号集合的隐藏因素。ICA定义了观察到的多变量数据的生成模型,通常将其作为大型样本数据库。
在模型中,假设数据变量是一些未知潜在变量的线性混合,混合系统也是未知的。潜变量被假定为非高斯和相互独立的,它们被称为观测数据的独立成分。
ICA与PCA相关,但它是一种更强大的技术,能够在这些经典方法完全失败时找到潜在的源因素。其应用包括数字图像、文档数据库、经济指标和心理测量。